Система MathCAD Plus 6.0 Pro




Система MathCAD Plus 6.0 Pro - стр. 345


Рис. 10.16. Решение системы линейных уравнений

Для решения систем линейных уравнений в MathCAD PLUS 6.0 введена функция

lsolve(A, B),

которая возвращает вектор X для системы линейных уравнений A × X = B при заданной матрице коэффициентов A и векторе свободных членов B. Если уравнений n, размерность вектора B должна быть n, а матрицы A -- n × n. Пример применения этой функции также дан на рис. 10.16.

10.12. Функции линейной и сплайновой аппроксимаций

При проведении научно-технических расчетов часто используются зависимости вида y(x), причем число точек этих зависимостей ограничено. Неизбежно возникает задача получения достаточного числа точек в промежутках между узловыми точками (интерполяция) и за их пределами (экстраполяция). Эта задача решается аппроксимацией исходной зависимости, т. е. ее подменой какой-либо достаточно простой функцией. Система MathLAB предоставляет возможность аппроксимации двух типов: кусочно-линейной и сплайновой.

При кусочно-линейной интерполяции, или аппроксимации, вычисления дополнительных точек выполняются по линейной зависимости. Графически это означает просто соединение узловых точек отрезками прямых, для чего используется следующая функция:

linterp(VX, VY, x)

Для заданных векторов VX и VY узловых точек и заданного аргумента x эта функция возвращает значение функции при ее линейной аппроксимации. При экстраполяции используются отрезки прямых с наклоном, соответствующим наклону крайних отрезков при линейной интерполяции.

При небольшом числе узловых точек (менее 10) линейная интерполяция оказывается довольно грубой. При ней даже первая производная функции аппроксимации испытывает резкие скачки в узловых точках. Для целей экстраполяции функция linterp не предназначена и за пределами области определения может вести себя непредсказуемо.

Гораздо лучшие результаты дает сплайн-аппроксимация. При ней исходная функция заменяется отрезками кубических полиномов, проходящих через три смежные узловые точки. Коэффициенты полиномов рассчитываются так, чтобы непрерывными были первая и вторая производные. Линия, которую описывает сплайн-функция, напоминает по форме гибкую линейку, закрепленную в узловых точках (откуда и название аппроксимации: splain-гибкая линейка).




Содержание  Назад  Вперед